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UNDERWATER HELMHOLTZ RESONATOR TRANSDUCERS FOR LOW-FREQUENCY, HIGH
POWER APPLICATIONS

A.M. Young and T.A. Henriquez

Naval Research Laboratory, Underwater Sound Reference Detachment,
P.O. Box 8337, Orlando, Florida, USA 32856

I. UNDERWATER HELMHOLTZ RESONATORS

When considering low-frequency underwater acoustic sources, it is recognized
that, in general, the radiating device will be small when compared to the
acoustic wavelength in the medium. It is this condition, not poor design
practices, which precipitates the large size and weight, low efficiency, and
relatively poor reliability from which high power, low-frequency sources
suffer. The diminishing real part of the radiation impedance dictates 1 w
efficiency and large required volume velocities; large volume velocitie , in
turn infer large force, and therefore, heavy and robust devices. When these
inherent difficulties are coupled with the requirement of operation at deep
ocean depths, the problems facing the transducer designer become greatly
magnified. Several transduction mechanisms, in different design configurations,
are capable of producing high source levels over low-frequency bandwidths of
an octave or more. Most of these designs, however, require some form of depth
compensation and/or pressure release for the interior of the radiator which
either limits the operational depth capability of the device or greatly
increases its complexity. Aside from the obvious constraints of output power
and bandwidth, the design of low-frequency transducers is determined by the
trade-off between achieving the operational depth capability and the restraints

on size and weight. The ideal device is one which meets all of the electro-
acoustic requirements while operating independently of water depth. The search
for the ideal solution naturally leads to the consideration of design configu-
rations which can be "free-flooded"; that is, configurations where no pressure
differential exists across any portion of the transducer due to the surrounding
hydrostatic pressure.

The Helmholtz resonator basically consists of a closed rigid cavity coupled to

the external medium through an opening or orifice, as depicted in Figure 1,
and as such is a "free-flooded" device. Helmholtz resonators have been used
as filter elements in air acoustics and as narrow bandwidth sources in under-
water acoustics. The application under consideration here, however, is the
use of a Helmholtz resonator to increase the low-frequency output of a piezo-
electric ceramic radiator as shown in Fig. 2. As shown in the figure, well
below the frequency of its first resonance, a piezoelectric radiator normally
has a positive 12-dB-per-octave slope in the output sound pressure level per
volt as a function of increasing frequency. If, however, the ceramic element
is used in a configuration where one of its surfaces radiates directly into the
unbounded medium and the other surface radiates into the fluid-filled cavity of

a Helmholtz resonator, there will be a resultant increase in the output sound
, pressure level at the Helmholtz resonance frequency. In this type of trans-

ducer, the ceramic radiator could generally be in the form of one of three

basic configurations in which all or part of the Helmholtz cavity is formed by
the ceramic. These three configurations are shown in Fig. 3. The most simple

configuration is that of a piezoelectric ceramic sphere where the interior

volume of the sphere forms the Helmholtz cavity.1 This design, however, would

52 Proc.I.O.A. Vol 9 Part 2 (1987)
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not generally be considered feasible for the frequencies desired because the
mosaic construction required for large sizes makes the sphere relatively
fragile and expensive. In the second configuration, a piezoelectric ceramic
tube forms all but the ends of a cylindrical cavity. 2 The large sizes required
by low-frequency applications dictate that the ceramic tube be fabricated from
a stack of segmented ceramic rings as shown in the figure. In this configu-
ration, to assure that the ceramic remains in compression, the rings must be
radially prestressed by wrapping them with a glass-fiber/epoxy composite. The
ring segments may be either radially or circumferentially poled although poling
thickness limitations generally make circumferential poling preferable. The
third configuration consists of a cylindrical metal housing with a ceramic
flexural disc at one end. The flexural disc may be either bilaminar or trila-
minar in construction; that is, with a mosaic of piezoelectric ceramic lami-
nated to either one or both sides of a metal disc. Of the two configurations
considered feasible for low-frequency applications, each has advantages over
the other dependent primarily upon geometry constraints. When the requirements
do not constrain the diameter, the flexural disc would be the most efficient
radiator; if the diameter is constrained, however, the segmented ceramic rings
would become the preferred radiator.

II. DESIGN CRITERIA

From the simple equation for the resonance frequency of a Helmholtz resonator

f m 1 1()
r 2T CM (1'

cA
where C is the compliance of the cavity and MA is the inertance of the orifice;

cA

it would appear to be possible to design a device for operation at low fre-
quencies with a small orifice radius and small cavity volume. However, internal
losses increase with decreasing orifice size and cavity volume. Decreasing the
cavity volume also decreases the volume of ceramic in the transducer and,
therefore, the maximum available volume velocity. In other words, the orifice
size and cavity volume may be decreased only at the expense of a lower acoustic
output power capability. Obviously then, for high-power applications, it is
desirable to maximize the orifice size and cavity volume within the size and
weight restraints of the requirements.

In reality, the Helmholtz resonance frequency for a given orifice inertance is
determined not only the compliance of the cavity, but by the compliance of the
total system. That is, the resonance frequency is influenced by other mechan-
ical compliances in the system such as the compliance of the piezoelectric
ceramic driver, Cd. Woollett3 identified the relationship between the cavity

compliance, Cc, and the driver compliance, C d , as an important design parameter

and defined it as

= d (2)

Cd + Cc

It can be shown that for a given design, the output power is proportional to
the factor ( 1 - a)2 while the viscous loss in the cavity is inversely propor-
tional to (1 - a). Therefore, if the compliance of the driver becomes large

Proc. I.O.A. Vol 9 Part 2(1987) 53
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in relation to the compliance of the cavity, the output power will decrease and
the viscous loss in the cavity will increase.

The radiated power at the Helmholtz resonance frequency is, of course, deter-
mined in large part by the Q of the device. There is maximum, or lossless, Q
associated with any Helmholtz resonator and it is primarily dependent upon the
size of the transducer. That is, in general, for a given frequency, the larger
the transducer becomes, the higher will be its Q, or sharpness of resonance.
The Q actually obtained in practice, however, is strongly dependent upon inter-
nal losses in the system, primarily viscous losses in the cavity and orifice.

A second parameter which affects the maximum radiated power at the Helmholtz
resonance frequency is the fracture stress of the piezoelectric ceramic. If
the Q of the system is high, the pressure inside the cavity can cause the
fracture stress of the ceramic to be exceeded at high drive levels. The result
would be a catastrophic failure of the material. The maximum allowable sound
pressure level that can be obtained near the resonance frequency may be deter-
mined from the geometry of, and the material used to construct, the ceramic
driver.

III. ANALYSIS, MODELING, AND EXPERIMENTAL RESULTS

The most simple model used to describe underwater Helmholtz resonator trans-

ducers is a lumped element equivalent circuit. The values for the elements

are determined from the geometry of the device and the parameters of the
materials used. With all of the mechanical and acoustical elements converted
to their electrical equivalents, the model is analyzed through the use of

electronic circuit analysis techniques. This traditional modeling approach
works quite well as long as the initial assumption of representing the device

as a combination of lumped masses, compliances and resistances holds true.

For most transducers, this is usually the case when the largest dimension of

the radiator is small when compared to the acoustic wavelength in water. When

using this technique for Helmholtz resonator transducers, however, additional
care must be taken because of the nonlinear losses associated with viscous

flow in the cavity and orifice and because, in order to obtain lumped represen-

tations of the cavity compliance and orifice inertance, the boundary between
the twomu%.be clearly 1 the "aspect ratio", or the ratio

of the diameter to ot he becomes an important consid-
eration. As the diameter of the orifice approaches that of the cavity (aspect

ratio - 1), the effective inertance and compliance are much more difficult to

define and not properly represented as lumped elements; the other extreme,

aspect ratio - -, is of no interest as a high power radiator. In any case,

the electro-mechano-acoustical circuit is a good diagramatic representation in

that it clearly shows the two radiators in the system coupled by the compliance

of the cavity.

A further complication in the design of underwater Helmholtz resonators is the

structure required to support the active element(s) and to form the cavity
closures. Not only must resonances in these structures be avoided for the

frequency band of interest, but they must also maintain the stiffness of the
cavity. That is, if these structural clcients are not stiff enough, they will
add to the compliance of the cavity, and therefore, cause a shift in the

Helmholtz resonance frequency. A second effect caused by these elements not

being "stiff enough" is acoustic radiation from their surfaces exposed to the

54 Proc.I.O.A. Vol 9 Part 2 (1987)
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unbounded medium; that is, one surface of these structures is often exposed to
the high pressure in the cavity and the resulting vibration makes them poten-
tial radiators. The significance of these structures as radiators is obviously
dependent upon their relative amplitudes and phases.

Although this type of structural vibration problem does not lend itself to
solution via equivalent circuit analysis, it is ideally suited to the methods
of finite element analysis. A relatively new modeling technique we are
applying to transducer analysis is: a surface velocity distribution for a
transducer structure is ger-rated by a finite element model which is in turn,
used as the input to a generalized acoustic radiotion impedance model 4 . Experi-
mental feedback is provided via the techniques of modal analysis and, of course,
by the measured electroacoustic parameters. Initial results look quite pro-
mising.

There is not sufficient space available here to show experimental results, but
the oral presentation will compare predicted performance from equivalent
circuit and finite element/radiation impedance analyses with measured results
for at least three separate devices.
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Figure 1. Basic configuration of the
Helmholtz Resonator.
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Figure 2. Transmitting voltage response
of a fluid-filled piezoelec-
tric ceramic tube with and
without a Hplmholtz resonator

(orifice in one end).
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(G) CERAMI1C SPHERE

(b) CERAMIC TUBE

(c) CERAMIC FLEXURAL DISC

Figure 3. Three basic con-
figurations of
underwater piezoelec-
tric Helmholtz
resonators.
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